

DATALOGIC AUTOMATION

BM12x0 Modbus TCP
I/O Data Mapping

Rev. 01 (11/08/2011)

Pag. 1 of 5

Overview

The following notes show how to map the I/O communication data when using a BM12x0 Host
Interface module (Modbus TCP Interface).

� Read Process Data (Output Data)

The “Read Process Data” are the output data that the PLC commands towards the scanner.

They have to be written to the HOLDING Registers (4x), from the address 40001 to the
address 40256.

The Modbus TCP function to use is:
- "Read/Write Multiple Register"(code 23) function, to read/write the “Holding

Registers(4x)” area.

� Write Process Data (Input Data)

The “Write Process Data” are the input data that come from the reader (scanned barcodes).

They are available:
- in the INPUT Registers(3x), from the address 30001 to the address 30256.

and they are also available;
- in the HOLDING Registers(4x), from address 40257 to address 40512.

The Modbus TCP functions to use are:
- "Read Input Register"(code 4) function, to read the “Input Registers (3x)” area;
- "Read Holding Register"(code 3) function, to read the “Holding Registers (4x)” area
- "Read/Write Multiple Register"(code 23) function, to read/write the “Holding

Registers (4x)” area

DATALOGIC AUTOMATION

BM12x0 Modbus TCP
I/O Data Mapping

Rev. 01 (11/08/2011)

Pag. 2 of 5

The situation as in table below:

Register type Begin
Address

(symbolic)

End Address
(symbolic)

Content

Input Register
(3x)

30001 30256 Input data
Write Process Data

Holding Register
(4x)

40001 40256 Output data
Read Process Data

Holding Register
(4x)

40257 40512 Input data
Write Process Data

Functions & Offset:
the addresses above are "symbolic" addresses.
In order to get the register content through a dedicated reading function, we use the "offset"
value.

Example:
- to read the INPUT Register area, we use the function #4 "Read Input Registers".
Then, to read the first INPUT register (register 30001), we have to use that function with offset =
0;

- to read the HOLDING Register area, we use the function #3 "Read Holding Registers".
Then, to read the first input data in the HOLDING Register area (register 40257), we have to
use that function with offset = 256 (100 hex)

DATALOGIC AUTOMATION

BM12x0 Modbus TCP
I/O Data Mapping

Rev. 01 (11/08/2011)

Pag. 3 of 5

� Where do we get the data (Input Data)?

Where exactly can we read the barcode data?
As answer, see the following example:

The scanned bar code is <stx>12345678<etx> (10 bytes).

1) If NO flow control is enabled (Data Flow Control = Disable)

the data are available from register 30001 of the Input Registers, and from register 40257 of
the Holding Registers.

Input Registers are as follows (I always assume the Big Endian format):
- 30001: 1 <stx> (offset = 0)
- 30002: 3 2
- 30003: 5 4
- 30004: 7 6
- 30005: <etx> 8 (offset = 4)

and for the Holding Registers
- 40257: 1 <stx> (offset = 100 hex)
- 40258: 3 2
- 40259: 5 4
- 40260: 7 6
- 40261: <etx> 8 (offset = 104 hex)

Warning: here the user needs to set the Input area size to at least the barcode length.
This means: Master Input Area Size = 10 (minimum).

DATALOGIC AUTOMATION

BM12x0 Modbus TCP
I/O Data Mapping

Rev. 01 (11/08/2011)

Pag. 4 of 5

2) If the Flow control is enabled (Data Flow Control = DAD Driver)

first 3 bytes are the header bytes for the flow control, then the data start at the register
30002 of the Input Registers area, and at the register 40257 of the Holding Register area

Input Registers are as follows :
- 30001: <header2> <header1> (offset = 0)
- 30002: <stx> <header3>
- 30003: 2 1
- 30004: 4 3
- 30005: 6 5
- 30006: 8 7
- 30007: 0 <etx> (offset = 6)

and for the Holding Registers:
- 40257: <header2> <header1> (offset = 100 hex)
- 40258: <stx> <header3>
- 40259: 2 1
- 40260: 4 3
- 40261: 6 5
- 40262: 8 7
- 40263: 0 <etx> (offset = 106 hex)

Warning: here the user needs to set the Input area size to the barcode length + 3, at least, in
order to consider the header bytes.
This means: Master Input Area Size = 13 (minimum).

Note:
Some Schneider PLC CPUs are not able to access to the “Input Registers"(3x) area, because they
do not include the “code 4” function. These PLCs need to access the “Holding Registers" (4x)
area to read the Input data.

The BM12x0 module supports both access methods; any user application can access either the
3x area and the 4x area.

DATALOGIC AUTOMATION

BM12x0 Modbus TCP
I/O Data Mapping

Rev. 01 (11/08/2011)

Pag. 5 of 5

� Where do we write the commands (Output Data)?

Where exactly does the Modbus Master(ex: PLC) write the commands to the slave (ex:
barcode scanner)?
As answer, see the following example:

An application needs to control the reading phase of the scanner through command strings
sent from the PLC.

Actions:
1) the user sets the scanner Operating Mode as it starts reading when the character “STX”

(02hex) has received;

2) the user sets the scanner Operating Mode as it stops reading when the character “ETX”

(03hex) has received;

3) using the Modbus TCP function "Read/Write Multiple Register" (code 23), the user
writes the “Holding Registers (4x)” area as following:

• to START the reading phase

- 40001: 00 02 (offset = 0 hex)

• to STOP the reading phase
- 40001: 00 03 (offset = 0 hex)

The scanned bar code is now available on the data area according to the previous example.

