

APPLICATION NOTE

Datalogic WebSentinel™
DB Architecture

Reference SW Packages:

Datalogic WebSentinel™: sw package 4.0.0 and later

History

Issue Date Change
Rev. 0 August 23rd, 2010 First release

ii

CONTENTS

1 OVERALL ARCHITECTURE ...1
1.1 Managed Reading System Types...1
1.2 Alarm severity and lifecycle ..3
1.2.1 Definition of Alarms...4
1.2.2 Digital Input Signals as Alarms ...4
1.3 Server-Backoffice Interface ..6
1.3.1 Program Interface vs. Database Interface ..6
1.3.2 Server-Backoffice Program Interface..6
1.3.3 Server-Backoffice Database Interface ..6
1.3.4 Configuration Procedure...7
1.3.5 Alarms Data ..7
1.3.6 Performance Data...7

2 DATABASE ARCHITECTURE ..8
2.1 Database Platform..8
2.2 Removal of an Array ...8
2.3 Tables ...8
2.3.1 DeviceTypes File ..8
2.3.2 Plant Configuration ...9
2.3.3 Arrays Configuration ...12
2.3.4 Slaves Configuration...16
2.3.5 Security Configuration ..17
2.3.6 Code Groups Configuration ..18
2.3.7 Code Types Configuration ..18
2.3.8 Parcel Archive...18
2.3.9 Operations Configuration..23
2.3.10 Current Alarms List ...26
2.3.11 History Alarms List..28
2.3.12 Current Plant Performance Table ...28
2.3.13 History Plant Performance Table..29
2.3.14 Current Array Performance Table...30
2.3.15 History Array Performance Table ...33
2.3.16 Current Slave Performance Table ..36
2.3.17 History Slave Performance Table ...37
2.3.18 SW Inventory Table ..39
2.3.19 Alerts Configuration ..39
2.3.20 Compatibility Setup...42
2.3.21 Alarms Definition...43
2.3.22 Alarms Severity Assignment...43
2.3.23 Current Events Log...44
2.3.24 History Events Log..44
2.3.25 Last Parcel Info...45
2.3.26 Alarms Propagation and Icon Coloring ...47
2.3.27 Plant Layout Description...50
2.4 Consistency and Synchronization...51

3 BACKOFFICE LAYER ARCHITECTURE..52
3.1 Database Initialization...52
3.2 Suspect Interval Flag ..52

 iii

4 EXTERNAL DATABASE ACCESS ...53
4.1 Local Connection ..53
4.2 Remote Connection ..53
4.3 SQL Samples..56

5 MEANINGLESS FIELDS IN ON-LINE MODE ...57

iv

OVERALL ARCHITECTURE

 1

1

1 OVERALL ARCHITECTURE

WebSentinel is based on a 3 layers architecture:

1. Client Layer: implemented by any Web Browser. There may be several instances of
Client Layer, each allocated on its own machine. An instance is initiated when a Web
Browser logs on the Server Layer and terminates when the Web Browser is logged off
by the Server Layer,

2. Server Layer: implemented by a Web Server based application. It interfaces the Client
Layer providing it with all windows (pages) and their content. It supports both static and
dynamic contents, and the automatic update of windows content. There is a single
instance of Server Layer.

3. Backoffice Layer: it collects all information from the Plant, and makes it available to the
Server Layer for display. It also performs all computations and registrations that are
necessary to record statistics info based on session and hours periods. There is a single
instance of Backoffice Layer.

Server and Backoffice Layers reside on a same machine, but they are executed by 2
different Java virtual machines.
The pair Server and Backoffice Layers will be referred to from now on as WebSentinel.

Client Layers normally reside on different machines, although it is possible for a Client Layer
to be activated on the same machine as WebSentinel.

Clients and Server may be part of a same intranet, but it is also possible that they belong to
different domains of the internet.

The Plant is made up by several reading stations (laser and vision systems) each interfacing
WebSentinel via a single controller.

The connection between WebSentinel and the reading stations is via TCP/IP.
The overall system architecture is depicted in Figure 2.

1.1 MANAGED READING SYSTEM TYPES

Past versions of WebSentinel had to face conflicting requirements:

 On one hand, WebSentinel was expected to be able to interface different types of
reading systems, without any specific type related behavior.

 On the other hand WebSentinel was expected to be able to adapt its windows to the
characteristics of the reading system it is currently displaying.

WebSentinel allows a better handling of these problem by introducing an explicit
management of supported array types.

Based on array type info:

 The maximum number of slave nodes in the array will be automatically configured.

 The caption of slave windows and the prefix of automatically assigned slave names
(“scanner” vs. “slave”) will be automatically configured.

DATALOGIC WEBSENTINEL™ DB SCHEMA

2

1

 The possible types of a slave of an array are known and can be checked.

 The maximum number and caption of alarm LEDS (both of the controller and of
individual slaves) will be automatically configured.

 The number and default label of digital inputs (and the caption of the digital input display)
will be automatically configured (N.B. digital inputs may be currently used to display
additional alarm info).

 The operating mode of the array may be restricted.

 The way the array is configured (via Genius MIB or not) is known.

 Whether also slave nodes support Genius is known.

 Whether array components allow the access to log files, and in what directory they are
available (assumed homogeneous for all array elements).

 Whether array components allow the access to image files, and in what directory they
are available (assumed homogeneous for all array elements).

The “Managed Reading System Types” description file includes also information about:

 The specific characteristic of supported slave types (including an unknown type).

 The definition of alarms and their characteristics:

 Acronym (indicated as “probable cause”)

 Univocal numeric identifier

 Category

 Default severity.

The default severity of each individual alarm type can then be redefined for all arrays of the
plant (default plant severity assignment). The severity assignment provided by the
“Managed Reading System Types” description file will provide the default value for default
plant level assignments.

The default severity of each individual alarm type can then be redefined for each array of the
plant (array level severity assignment). The severity assignment provided by the default
plant severity assignment will provide the default value for default plant level assignments.

In any case, a specific severity assignment will be defined for each array, even if the array
assignment is identical to the plant level default assignment.

In any case, the severity that will be considered is the one of the specific array.

Each reading system type will be described through an XML text and the behavior of
WebSentinel will be based on this description.

New reading system types can be added by adding the related description to the XML type
file.

OVERALL ARCHITECTURE

 3

1

1.2 ALARM SEVERITY AND LIFECYCLE

WebSentinel is open to the support of alarm severity.
In some older versions of WebSentinel all alarms share a same severity label.
In the long run one may expect the individual arrays to explicitly indicate the severity of the
alarms they are raising: but this implies that the WebSentinel protocol gets upgraded.

An intermediate solution can be based on the manager-based assignment of a severity level
to alarms: it will be WebSentinel itself (the Backoffice Layer) that performs severity
assignment based on a configurable severity assignment profile table.

A default value of the alarms severity assignment profile is defined for the whole plant, but
this default value can be overridden for individual arrays.
The definition of the alarms severity assignment profile is based on the assignment of an
integer code to each alarm.

Four levels of severity are supported.

WebSentinel will also be capable to support an alarms lifecycle.
An alarm can be in several states:

 Active, if it has been raised but.

 Cleared, if the alarm doesn’t hold any longer.

Figure 1 Alarms Lifecycle

Additionally, each alarm cause is assigned a category.

There are also diagnostic events that may not be treated as alarms, since there is no related
clear event: the only events of this type currently considered are performance threshold
crossing notifications.

Following is a set of constants that supports the definition of the alarms severity assignment
profile, category and of an alarms lifecycle.

 /**
 * Costanti per la categoria degli allarmi
 */
 static final int communicationAlarmCategory = 0;//SMTP, TCP e slave
 //comms
 static final int equipmentAlarmCategory = 1;//motor,laser,...
 static final int enviromentalAlarmCategory = 2;//digital input
 static final int qualityAlarmCategory = 3;//no read
 static final int configMismatchAlarmCategory = 4;//unexpected slaves
 static final int performanceEventCategory = 5;//performance
threshold
 //crossing
notification
 /**

Cleared Active

Alarm raised by
managed element

Alarm cleared by
managed element

DATALOGIC WEBSENTINEL™ DB SCHEMA

4

1

 * Costanti per la severita' degli allarmi
 */
 static final int clearedSeverity = 0;
 static final int warningSeverity = 1;
 static final int minorSeverity = 2;
 static final int majorSeverity = 3;
 static final int criticalSeverity = 4;

Alarms are referenced through the data item in the WebSentinel PDU that is associated to
the alarm.

1.2.1 Definition of Alarms

The set of alarm causes that are supported is defined in the “Managed Reading System
Types” description file. For each alarm cause the following info is provided:

1. The acronym of the probable cause.

2. The numeric code of the probable cause.

3. The category.

4. The default severity.

Whilst the first three pieces of information are fixed, the fourth provides only a default value:
this default value will be used by the Backoffice Layer to initialize table
PLANT_ALMSEVCFG, that defines the default severity of each alarm for the plant (for all
arrays of the plant).

Starting from this table, the Backoffice and the Server Layers (in case of recovery from and
old .ini file or configuration editing, respectively) will initialize the alarm severity profile for
each new array in table DEVALMSEVCFG.

During the on-line behaviour, in order to acquire the correct severity for an alarm cause
related to an array, it will be necessary only to access table DEVALMSEVCFG.
For plant level alarms the severity will be taken from the PLANT_ALMSEVCFG table.

1.2.2 Digital Input Signals as Alarms

Digital inputs will be handled as alarm sources:

 Either they are associated to resources (e.g. the encoder), in which case the bit is
raised/cleared when an alarm is raised/cleared for the associated resource,

 Or they are connected to an alarm sensor, in which case the bit is raised/cleared when
an alarm condition is sensed active/cleared.

In any case digital inputs that are defined as relevant for an array will have to be associated
to a defined alarm cause: if no suitable alarm cause is found among those that are defined
the generic alarm cause associated to the digital input (GenericInput<k>Alarm) must be
selected.

Beside an alarm cause a relevant digital input must be associated to a caption (1 to 3 chars),
that will be used on the GUI, and will also be used in report files when the digital input is
associated to its generic alarm cause.

OVERALL ARCHITECTURE

 5

1

The overall system architecture is depicted in the following figure:

Client Client

Intranet / Ethernet

database

Log and
reports

Internet / Intranet

Reading Station Reading Station Reading Station

Client

BackOffice

Server

Datalogic WebSentinel™ Application

Email alerts

Figure 2 Overall System Architecture

DATALOGIC WEBSENTINEL™ DB SCHEMA

6

1

1.3 SERVER-BACKOFFICE INTERFACE

1.3.1 Program Interface vs. Database Interface

The interaction between Server and Backoffice Layers takes place through 2 very different
mechanisms:

 Via exchange of data that are contained in the database and that are written by one
entity and read by the other.

 Via exchange of synchronization triggers, that allow the two layers to coordinate their
operations. These synchronization events are exchanged on a TCP connection (initiator
of connection: Server Layer; responder: Backoffice Layer).

1.3.2 Server-Backoffice Program Interface

The following synchronization events will be exchanged between the 2 layers. In particular:

 Events will be implemented via procedure calls.

 Events will be exchanged as RPC inter objects method calls, based on the use of the
CAJO support (https://cajo.dev.java.net/).

 All events will be synchronous, with synchronization implemented through the return
of the interface procedure.

 Most events will be initiated by the Server Layer, with the Backoffice Layer
responding to Server Layer requests.

An additional, implicit event is represented by the fact that the Backoffice Layer accepts the
connection request from the Server Layer on termination of its Initializing phase.

1.3.3 Server-Backoffice Database Interface

The database interface is based on the fact that one entity writes a piece of information in the
database, and the other entity reads it.

There are 2 types of information:

 Configuration information.

Normally written by the Server and read by Backoffice.

The Backoffice Layer writes configuration info only during the Initializing phase or during
the static or dynamic plant configuration procedure.

 Alarm and Performance information.

Written by the Backoffice and read by Server.

The database will be initialized at the first startup of the system by the Backoffice Layer that
will also populate it either with the information derived from a pre-existing database file or
with default values: in any case all required information will be explicitly present in the
database.

The Server Layer will validate as far as possible the configuration info provided by the user:

 It will provide sensible defaults.

OVERALL ARCHITECTURE

 7

1

 It will provide menus where legal values can be selected from.

 It will perform checks against legal value sets or syntax constraints.

1.3.4 Configuration Procedure

WebSentinel configuration may be modified only when operations are stopped: the Server
will stop Backoffice operations using the Server-Backoffice Program Interface.

It will do this only when an explicit configuration change is applied: when this occurs also the
operations of Clients will be temporarily interrupted.
The Server Layer issues a Stop command for the Backoffice layer when it does the first
configuration change.

The Server Layer issues a Start command for the Backoffice layer when it terminates the
reconfiguration procedure: this fact is triggered by the exit from the Settings window after a
configuration change has been performed.
By issuing the Start command the Server Layer will trigger the execution of the plant
configuration procedure, so that plant configuration will be re-computed by the Backoffice
Layer and as a consequence its display will be updated.

1.3.5 Alarms Data

It is expected that in the database they are registered not only in the way they are received
from the array, but the Backoffice performs all the semantic mappings (based on array type)
and propagations to summary alarm indicators so that the Server is responsible only of
display.

The alarm mapping info is part of the description of a reading system type.

1.3.6 Performance Data

Computation of performance indices and generation of history data and reports are the
responsibility of Backoffice.

The Server is responsible only of display of performance data.

DATALOGIC WEBSENTINEL™ DB SCHEMA

8

2

2 DATABASE ARCHITECTURE

2.1 DATABASE PLATFORM

Derby: Apache Derby, an Apache DB subproject, is a relational database implemented
entirely in Java and available under the Apache License (Version 2.0).

The database will be initialized at the first startup of the system by the Backoffice Layer that
will also populate it either with the information derived from a pre-existing database file or
with default values: in any case all required information will be explicitly present in the
database.

A single schema is currently used, named “S”.

Following is the definition of the tables that are part of this schema.

2.2 REMOVAL OF AN ARRAY

When an array is removed from the plant, all rows in all tables related to it must be removed.

When a slave is removed from an array, all rows in all tables related to it must be removed.

2.3 TABLES

2.3.1 DeviceTypes File

Some information that is available in the DeviceTypes2.xml configuration file is replicated
inside the database.

This information is described in the following tables:

 SUPDEVSLAVETYPE

SUPDEVSLAVETYPE Table

This table lists the types of all devices (array controller or slave) that may appear in the Plant
and are managed by WebSentinel.

Write Access: Backoffice Layer during startup

Read Access: Anyone

Column Notes SQL Type

type String name of the type as listed in
file DeviceTypes2.xml

VARCHAR NOT NULL

level Indicates whether this is the type of
an array or that of a slave

INT NOT NULL

1 = array

2 = slave
Index columns: -

DATABASE ARCHITECTURE

 9

2

2.3.2 Plant Configuration

Plant level configuration is described by 2 tables:

 PLANT_SETUP

 PLANT_ALMSEVCFG

PLANT_SETUP Table

This table provides system (plant) wide information and default values for array and slave
parameters. It is a single row table.

Write Access: Backoffice Layer during configuration restore;

Server Layer during system configuration

Read Access: Backoffice Layer: only parameter mulAsGood

Server Layer: display of plantName, usAirportInterfaceStyle to define the
look&feel, default values when new arrays are configured

Column Notes SQL Type

plantName Up to 20 UNICODE character
string, not null

VARCHAR(20) NOT
NULL

packTrack Default operating mode of the
plant’s arrays

INT NOT NULL

0 = OnLine

1 = PackTrack

labelInput0 Must be not null if input 0 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause0

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput0 is
not NULL

labelInput1 Must be not null if input 1 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause1

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput1 is
not NULL

labelInput2 Must be not null if input 2 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause2

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput2 is
not NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

10

2

Column Notes SQL Type

labelInput3 Must be not null if input 3 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause3

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput3 is
not NULL

labelInput4 Must be not null if input 4 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause4

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput4 is
not NULL

labelInput5 Must be not null if input 5 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause5

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput5 is
not NULL

labelInput6 Must be not null if input 6 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause6

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput6 is
not NULL

labelInput7 Must be not null if input 7 is
present in default inputs set.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

ProbableCause7

It represents the probable cause
code of the alarm associated to
the digital input , if any

INT

Not NULL if labelInput7 is
not NULL

visibleSlots Default number of visible slots, for
plant’s arrays

INT NOT NULL

Range = 0..hardwired(40)

slaveLowPerformance Default low performance threshold
for individual slaves: in range 0.0
to 100.00

DOUBLE NOT NULL

lowPerformance Default low performance threshold
for individual arrays: in range 0.0
to 100.00

DOUBLE NOT NULL

DATABASE ARCHITECTURE

 11

2

Column Notes SQL Type

slaveNoReadAlarm Default length of the sequence of
parcels for which no label is read
by the slave for which a
NoReadAlarm is raised.

INT NOT NULL

noReadAlarm Default length of the sequence of
parcels that are not GoodRead for
which a NoReadAlarm is raised.

INT NOT NULL

usAirportInterfaceStyle Defines whether the slaves of an
array are identified as A, B, C, …
or whether they are identified as
01, 02, 03, …

The configuration field should be
renamed as: “slave identification”,

with value standard or numeric

INT NOT NULL

0 = standard

1 = numeric

mulAsGood Specifies whether MultipleReads
must be counted by WebSentinel
as GoodReads.

This parameter applies to all
arrays of the plant.

INT NOT NULL

0 = multiple not as good

1 = multiple as good

devicedomain It represent the default Domain to
which machines of the plant
belong, if any, otherwise NULL

VARCHAR

deviceusername It represent the default UserName
to be used to remotely access the
file system of plant’s machines,
otherwise NULL

VARCHAR

devicepassword It represent the default password
to be used to remotely access the
file system of plant’s machines,
otherwise NULL

VARCHAR

Index columns: -

PLANT_ALMSEVCFG Table

This table provides system (plant) wide default values for the assignment of severity to
alarms. This default assignment can be overridden by an array specific assignment.

The table contains one row for each type of alarm that is defined (see paragraph 1.2).

Write Access: Backoffice Layer during configuration restore or at database creation;

Server Layer during system configuration

Read Access: Backoffice Layer: when integrating the alarm profile of a new array;

Server Layer: when it configures the alarm profile of an array (in future
only). Currently this table may be ignored.

DATALOGIC WEBSENTINEL™ DB SCHEMA

12

2

Column Notes SQL Type

probableCause A non-negative integer,
associated one-2-one to an
alarm cause

INT NOT NULL

severity Default severity associated to
the related alarm cause

INT NOT NULL

1 = warningSeverity

2 = minorSeverity

3 = majorSeverity

4 = criticalSeverity
Index columns: probableCause

PLANT_SLOTS Table

This table provides system (plant) wide default values for the definition of code slots of each
array of the plant. This default assignment can be overridden by an array specific
assignment.

The table contains one row for each code slot that is defined in the plant wide default
configuration (the max number of rows is hardwired in the code, and it is currently 40).

Write Access: Backoffice Layer during configuration restore;

Server Layer during system configuration

Read Access: Server Layer: default values when new arrays are configured

Column Notes SQL Type

slotIndex Index of the slot INT NOT NULL

Range = 0 ..
(PLANT_SETUP.visibleSlots-1)

labelSlot Default label for this slot, in
a plant’s array.

Up to 10 UNICODE
characters.

VARCHAR(10) NOT NULL

Index columns: slotIndex

2.3.3 Arrays Configuration

DEVICECFG Table

Table DEVICECFG provides information about the arrays that are part of the plant.
There will be a row for each array.

Write Access: Backoffice Layer during configuration restore;

Server Layer during system configuration

Read Access: Backoffice Layer: to connect and poll arrays;

Server Layer: to create the TreeView, and to profile the array tabs.

DATABASE ARCHITECTURE

 13

2

Column Notes SQL Type

deviceIndex A non negative, unique, number.

N.B.: differently from old
WebSentinel the deviceIndex of
the plant’s arrays must not be
consecutive.

This means that arrays may also
be deleted.

In this case all related info is
removed from the database.

INT NOT NULL

name VARCHAR(20) NOT NULL

type Must be an element of a
predefined set of strings that are
the identifiers of the array types
defined in the “Managed Reading
System Types” description file

VARCHAR(20) NOT NULL

addr IP address (in decimal dotted
notation) of the array controller

VARCHAR(15) NOT NULL

port TCP port of the WebSentinel agent
on the array controller

INT NOT NULL

lowPerformance

Low performance threshold for this
array: in range 0.0 to 100.00

DOUBLE NOT NULL

noReadAlarm Length of the sequence of parcels
that are not GoodRead for which a
NoReadAlarm is raised for this
array

INT NOT NULL

labelInput0

Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause0

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput0 is
not NULL

labelInput1

Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause1

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput1 is
not NULL

labelInput2 Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

DATALOGIC WEBSENTINEL™ DB SCHEMA

14

2

Column Notes SQL Type

probableCause2

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput2 is
not NULL

labelInput3

Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause3

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput3 is
not NULL

labelInput4 Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause4

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput4 is
not NULL

labelInput5 Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause5

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput5 is
not NULL

labelInput6 Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause6

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput6 is
not NULL

labelInput7 Must be not NULL if digital input 0
is present in this array, NULL if it is
not used.

A null string is illegal.

Up to 3 UNICODE characters.

VARCHAR(3)

probableCause7

It represents the probable cause
code of the alarm associated to the
digital input , if any

INT

Not NULL if labelInput7 is
not NULL

DATABASE ARCHITECTURE

 15

2

Column Notes SQL Type

packTrack

Operating mode of this array INT NOT NULL

0 = OnLine

1 = PackTrack

2 = ClusterContinuous

visibleSlots Number of visible slots for this
array

INT NOT NULL

Range = 0..hardwired(40)

geniusPortNo Port Number of the Genius
application, in case it is significant
and configurable

INT

Range=1024..65535

0 if not significant

devicedomain It represent the Domain to which
machines of this array belong, if
any, otherwise NULL

VARCHAR

deviceusername It represent the UserName to be
used to remotely access the file
system of this array’s machines,
otherwise NULL

VARCHAR

devicepassword It represent the password to be
used to remotely access the file
system of this array’s machines,
otherwise NULL

VARCHAR

TABINDEX It is the index of the tab where the
icon of the array is displayed in the
Plant Layout window

INT DEFAULT NULL

Index columns: deviceIndex

DEVICESLOTSCFG Table

This table provides the definition of code slots of each array of the plant.
The table contains one row for each code slot that is defined for the array (the max number
of rows is hardwired in the code, and it is currently 40).

Write Access: Backoffice Layer during configuration restore;

Server Layer during system configuration

Read Access: Server Layer: default values when new arrays are configured

Column Notes SQL Type

deviceIndex Index of the array to which the
row is related

INT NOT NULL

Range = 0 .. 255

slotIndex Index of the slot INT NOT NULL

Range = 0 ..
(DEVICECFG.visibleSlots-1)

labelSlot Default label for this slot, in a
plant’s array.

Up to 10 UNICODE characters.

VARCHAR(10) NOT NULL

Index columns: deviceIndex, slotIndex

DATALOGIC WEBSENTINEL™ DB SCHEMA

16

2

2.3.4 Slaves Configuration

Table SLAVECFG provides information about the slave nodes that are part of the arrays of
the plant.
There will be a row for each slave, be it configured (detected or not) or only detected.

Write Access: Backoffice Layer during configuration restore, or when it detects a slave
that was not configured.

Server Layer during configuration. The slave configuration window must
include a button that allows to “accept” a slave that has been detected but
was not previously configured.

Read Access: Backoffice Layer: to compute NoReadAlarms and performance threshold
crossing state.

Server Layer: to create the TreeView, and to profile the scanner tabs.

Column Notes SQL Type

deviceIndex A non negative, unique, number. INT NOT NULL
slaveIndex

A non negative number, unique
inside the array.

It is associated to the slave
index/address inside the array.

INT NOT NULL

name VARCHAR(20) NOT NULL

type

“Unknown” in case
configured=false or in case of a
configuration derived from an
existing .ini WebSentinel file.

VARCHAR(20) NOT NULL

lowPerformance

Low performance threshold for this
slave: in range 0.0 to 100.00

DOUBLE NOT NULL

noReadAlarm Length of the sequence of parcels
that are not read for which a
NoReadAlarm is raised for this
slave

INT NOT NULL

configured Tags whether a slave has been
configured by the operator (true) or
has only been detected (false).

In case the slave has been
detected even though it had not
been configured its name and type
are assigned by the Backoffice
Layer

INT NOT NULL

0 = false

1 = true

geniusIPAddr IP address to be used to connect to
the Genius application, in case it is
significant and configurable

VARCHAR(15)

Decimal dotted notation

geniusPortNo Port Number of the Genius
application, in case it is significant
and configurable

INT

Range=1024..65535

0 if not significant
Index columns: deviceIndex, slaveIndex

DATABASE ARCHITECTURE

 17

2

2.3.5 Security Configuration

Table SECURITY_SETUP provides information about users, their passwords and their
access rights, and the preferred language.
There will be a row for each user (account).

Notice that there may be several users with the same access rights. When constructing this
table starting from the existing .ini file, 3 normal accounts will be defined (user, operator,
administrator). If a password is defined, the same string will be used also as username,
otherwise an identical username and password will be defined, based on the access level
(operator and administrator).

Write Access: Backoffice Layer: at creation (with default users) or restore time.

Server Layer.

Read Access: Server Layer.

Column Notes SQL Type

userName The log-in identifier of the user VARCHAR(20) NOT NULL
userPassword

The password of the user: it is
kept in encrypted form.

VARCHAR(20) NOT NULL

accessRights INT NOT NULL

0 = limited user

1 = (normal) user

2 = limited operator

3 = (normal) operator

4 = limited administrator

5 = (normal) administrator

geniusPassthrough

This parameter specifies both
whether the functionality is
enabled for an account, and
the access rights of the
Genius session that gets
activated.

Whilst the database encodes
this as an integer, the display
and the selection on the GUI
should be based on the
related text

INT NOT NULL

0 = disabled

1 = enabled – user level

2 = enabled – installer level

3 = enabled – programmer
level

4 = enabled – reserved level

language The preferred language for
sessions related to this
account.

VARCHAR(20) NOT NULL

unit The preferred measurement
system for sessions related to
this account

VARCHAR

 imperial

 metric

DATALOGIC WEBSENTINEL™ DB SCHEMA

18

2

Column Notes SQL Type

vnc Defines whether a username
is allowed to connect to
WebSentinel or to elements of
the Plant using VNC.

The single Plant elements that
support VNC, must anyway
explicitly allow it.

INT NOT NULL DEFAULT 0

pswLastTime Registers the time of the last
password change, in order to
check whether a password
has become stale.

TIMESTAMP

downloadImagesFileAllowed Defines whether a username
is allowed to require the
image download form the
array

INT NOT NULL DEFAULT 0

Index columns: userName

2.3.6 Code Groups Configuration

Differently from the past releases of WebSentinel, WebSentinel doesn’t assume that code
groups are global over all plant’s arrays.
Thus, it must be possible to assign a specific description to code groups on a per array basis.

It must also be possible to define per single array the number of significant code groups.
The configuration of code groups that is done at plant level represents only the default
configuration of individual array, and can be overridden by specific configurations.

Maximum number of code groups per each array: 40.

2.3.7 Code Types Configuration

It is assumed that code types are global over all plant’s arrays.
This is not a real constraint since code types in WebSentinel are actually limited to represent
symbologies, and these are identified not by position but by their AIM identifier.
So, in practice, this constraint states only that in a plant there may be a maximum of 10
different symbologies.

Maximum number of code types: 20.

2.3.8 Parcel Archive

The parcel archive contains only information about parcels that have been acquired through
messages of type EXTENDED_PARCEL; parcels that have been acquired through
messages of type PARCEL are not registered in this archive.

The parcel archive info is provided through tables:

 table PARCEL_ARCHIVE_DIR

 table PARCEL_ARCHIVE_SEQ

DATABASE ARCHITECTURE

 19

2

 table PARCEL_ARCHIVE_EXT

 table PARCEL _ARCHIVE_SLOTEXT

PARCEL_ARCHIVE_DIR Table

This table contains identification and all barcodes information about all parcels that have
been processed by any array of the plant.

There is one row for each barcode of each parcel of each array.

This is the entry point for the search and display of a parcel. Several queries are possible:

1. By deviceIndex + parcelId: fetches info about a single parcel of a specific array: returns
all rows related to the parcel (with the same primary key). Note: because of the
uniqueness of parcel identification there will be at most one parcel with the indicated
deviceIndex + parceled.

2. By deviceIndex + code: fetches the parcelID related to all parcels of an array with the
indicated barcode. If the barcode is unique (it is actually an unambiguous parcel
identifier) then only one parcel is identified and returned (info about that parcel can then
be fetched using query type 1), otherwise several parcelID values may be returned.
Notice that all barcodes associated with a parcel are tried for a match, without any limit of
symbology or code group.

3. By code: fetches the deviceIndex and parcelID related to all parcels with the indicated
code of any array. One or several parcel may be identified and returned: in particular,
even if the input barcode is a unique parcel identifier, multiple results are possible if the
same parcel has been processed by several arrays.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

parcelID Parcel identifier, as
communicated in the
EXTENDED_PARCEL message.

A fixed length ASCII string.

 BIGINT NOT NULL

slotIndex

Index of the code group the
barcode belongs to

INT NOT NULL

labelIndex Position of the barcode in the
code group

INT NOT NULL

code

Barcode value VARCHAR(512) NOT
NULL

codeID AIM code of the symbology of
this barcode

VARCHAR(3) NOT NULL

codeLen INT NOT NULL

numReads Number of slaves that have read
this barcode

INT NOT NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

20

2

Column Notes SQL Type

mask

reading-mask INT NOT NULL

labelX Y coordinate of barcode DOUBLE NOT NULL

labelY Y coordinate of barcode DOUBLE NOT NULL
Index columns: deviceIndex, parcelId, code

PARCEL_ARCHIVE_SEQ Table

This table contains identification and timestamp (time the EXTENDED_PARCEL message
creating a parcel has been received) information about all parcels that have been processed
by any array of the plant.
There is one row for each parcel of each array.

This is an alternative the entry point for the search and display of parcels. It can also be used
to sequentially (direct and reverse) scanning the parcels processed by an array. Several
queries are possible:

1. By deviceIndex + parcelId: fetches the timestamp info related to a specific parcel on an
array.

2. By deviceIndex and timestamp: fetches the parcel (its unique key info), with the indicated
timestamp, relative to a specific array. Only one result is returned.

3. By deviceIndex and next timestamp: fetches the next parcel (its unique key info), in time,
relative to an indicated timestamp and a specific array.

4. By deviceIndex and previous timestamp: fetches the previous parcel (its unique key info),
in time, relative to an indicated timestamp and a specific array.

5. By deviceIndex and timestamp range: fetches all parcels (their unique key info) relative
to an array and a time interval.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

parcelID Parcel identifier, as communicated
in the EXTENDED_PARCEL
message.

BIGINT NOT NULL

timeStamp Instant the EXTENDED_PARCEL
message creating this parcel has
been received

TIMESTAMP

Primary unique key: deviceIndex + parcelID
Index columns: deviceIndex, parcelId, TimeStamp

PARCEL_ARCHIVE_EXT Table

This table contains parcel level information about all parcels that have been processed by
any array of the plant.

DATABASE ARCHITECTURE

 21

2

There is one row for each parcel of each array:

Queries are always by primary key.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

parcelID Parcel identifier, as communicated in
the EXTENDED_PARCEL message.

BIGINT NOT NULL

parcelLength It is the triggerOn-TriggerOff distance DOUBLE NOT NULL

gapFromPrevParcel DOUBLE NOT NULL

conveyorSpeed DOUBLE NOT NULL

parcelAnalysis Value 3 currently not used INT NOT NULL

range = 0..3

0 = GoodRead

 BaseInterface.rtGood

1 = NoRead
 BaseInterface.rtNo

2 = MultipleRead
 BaseInterface.rtMul

3 = PartialRead
 BaseInterface.rtPar

sideBySide FALSE means that the parcel is a
singulated cuboid

INT

NULL = not significant

1 = TRUE

0 = FALSE (singulated
cuboid)

parcelSLength in mm DOUBLE

NULL = not significant

parcelSWidth in mm DOUBLE

NULL = not significant

parcelSHeigth in mm DOUBLE

NULL = not significant

parcelSVolume cm3 DOUBLE

NULL = not significant

parcelXMin in mm.

absolute X coordinate of the leftmost
corner of the parcel

DOUBLE

NULL = not significant

parcelXMin in mm.

absolute X coordinate of the
rightmost corner of the parcel

DOUBLE

NULL = not significant

DATALOGIC WEBSENTINEL™ DB SCHEMA

22

2

Column Notes SQL Type

parcelWeight In g DOUBLE

NULL = not significant
Primary unique key: deviceIndex + parcelId

PARCEL _ARCHIVE_SLOTEXT Table

This table contains information about all slots that appear all parcels that have been
processed by any array of the plant.
There is one row for each slot of each parcel of each array.
Queries are always by primary key

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

parcelID Parcel identifier, as
communicated in the
EXTENDED_PARCEL
message.

BIGINT NOT NULL

slotIndex

 INT NOT NULL

labelSlot Identifier of the code group VARCHAR(10) NOT NULL

numLabel Number of barcodes of this
code group that have been read
on this parcel

INT NOT NULL

slotAnalysis Value 3 not used INT NOT NULL

range = 0..3

0 = GoodRead

 BaseInterface.rtGood

1 = NoRead
 BaseInterface.rtNo

2 = MultipleRead
 BaseInterface.rtMul

Primary non-unique key: deviceIndex + parcelID

PARCEL _ARCHIVE_FILTERCRITEXT Table

This table contains information about all filter rules created.

Write Access: Server Layer.

Read Access: Server Layer.

DATABASE ARCHITECTURE

 23

2

Column Notes SQL Type

CriterionName Name of the filter criterion VARCHAR(20) NOT NULL
UNIQUE KEY

Criterion String containing the filter
criterion.

CBLOB(100) NOT NULL

primary unique-key CriterionName
This table is only managed by SmartServer (except for its creation)

2.3.9 Operations Configuration

Table OPERATIONS_SETUP provides configuration information about the way the
Backoffice and the Server Layers work.
It is a single row table.

Parameter ContinuousUpdate of existing WebSentinel will be dropped since continuous
update of windows will no longer be supported.

Write Access: Backoffice Layer: at creation (with default) or restore time.

Server Layer, during system reconfiguration

Read Access: Backoffice Layer.

Server Layer.

Column Notes SQL Type

autoSession Backoffice Layer parameter.

Defines whether the session is
initiated (and terminated)
manually or automatically.

N.B.: even if autoSession=1 an
operator (with access rights
operator) can always stop the
current session, so as he can
start a session at any time when
the system is stopped.

INT NOT NULL

0 = manual session

1 = automatic session

(actually no difference
between the 2 values:

Session is always auto)

sessionHour Backoffice Layer parameter.

Significant even if
autoSession=0.

INT NOT NULL

Range = 0..23

sessionMin Backoffice Layer parameter.

Significant even if
autoSession=0.

INT NOT NULL

Range = 0..59

sessionDuration Backoffice Layer parameter.

Significant even if
autoSession=0.

Expressed in hours, multiple of 1
hour, divides 24 hours, so that
automatic sessions are initiated
and terminated each day at the
same instant.

INT NOT NULL

Enumeration = {1, 2, 4, 6,
8, 12, 24}

DATALOGIC WEBSENTINEL™ DB SCHEMA

24

2

Column Notes SQL Type

lastHourMode Backoffice & Server Layers
parameter.

INT NOT NULL

0 = last hour aligned to
session

1 = last hour aligned to
clock time

autoConnectOnRestart Backoffice Layer parameter. INT NOT NULL

0 = no automatic session
start at Backoffice start

1 = automatic session
start at Backoffice start

showPreviusSessionData

Server Layer parameter.

Controls the presence of
Previous Session information
fields in the displays.

INT NOT NULL

0 = don’t display

1 = display

daysToKeepEdit Backoffice Layer parameter.

Retention time (in days) of report
files before they are automatically
deleted by the system

INT NOT NULL

exportTXT

Backoffice Layer parameter. INT NOT NULL

0 = false/No

1 = true/Yes

exportCSV

Backoffice Layer parameter. INT NOT NULL

0 = false/No

1 = true/Yes

exportXML Backoffice Layer parameter. INT NOT NULL

0 = false/No

1 = true/Yes

showLog Server Layer parameter.
Controls whether the Log
Window is displayed.

INT NOT NULL

0 = false/No

1 = true/Yes

showParcels Server Layer parameter.
Controls whether Parcel PDUs
are displayed in the Log Window

INT NOT NULL

0 = false/No

1 = true/Yes

showPing Server Layer parameter.

Controls whether PingReply
PDUs are displayed in the Log
Window

INT NOT NULL

0 = false/No

1 = true/Yes

showLastParcel Server Layer parameter.

Controls whether the LastParcel
window tab is displayed (whether
the window is available to the
operator)

INT NOT NULL

0 = false/No

1 = true/Yes

DATABASE ARCHITECTURE

 25

2

Column Notes SQL Type

showEventsLog Server Layer parameter.

Controls whether the EventsLog
window tab is displayed (whether
the window is available to the
operator)

INT NOT NULL

0 = false/No

1 = true/Yes

pingEnabled Backoffice Layer parameter.

To continuously check the
connectivity of array controllers.

If the functionality is disabled no
connection supervision and no
automatic reconnection attempts
are performed.

INT NOT NULL

0 = false/No

1 = true/Yes

pingRetry Backoffice Layer parameter.

In seconds.

The base time interval between
one connection attempt to an
array and the next one.

INT NOT NULL

pingInterval Backoffice Layer parameter.

In seconds.

The time interval between one
connectivity check of an array
and the next one.

INT NOT NULL

pingTimeout Backoffice Layer parameter.

In seconds.

Duration of a connectivity check.

If the array’s answer is timed out
the array is displayed as
disconnected.

INT NOT NULL

suppRedundantCA Backoffice Layer parameter.

Defines whether active/standby
redundancy is supported, in the
form of clearing the ARP table of
the WebSentinel machine before
any connection attempt with an
array.

INT NOT NULL

0 = false/No

1 = true/Yes

updatePeriod Server Layer parameter.

It defines in msec the update
period of WebSentinel windows.

INT NOT NULL

logPath Backoffice Layer parameter.

Defines where in the
WebSentinel machine file system
log, report and backup files are
produced.
N.B.: log files are automatically
generated and retained for a
fixed period of 7 days.

VARCHAR(200) NOT
NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

26

2

Column Notes SQL Type

sessionsToKeep Number of sessions for which
session related history data are
kept

INT NOT NULL

daysToKeepAlarms Number of days for which history
alarms are kept

INT NOT NULL

backGndImage Image to be used as background
in the plant Layout window.

VARCHAR(200) NOT
NULL

defaultLanguage Server layer parameter.
Defines the default language that
will be assigned to a new account
when it is defined.

VARCHAR(20) NOT
NULL

reportLanguage Backoffice layer parameter.
Defines the language that will be
used for reports and SMTP
alerts.

VARCHAR(20) NOT
NULL

thresholdCrossingColor Server layer parameter.
RGB according to winApi macro

INT NOT NULL

maxSessions Server layer parameter.
Maximum number of
simultaneous user sessions that
are allowed.

INT NOT NULL

customerLogo Server layer parameter.
Name of file that contains
customer logo, if present.
NULL if no customer logo
(default).

VARCHAR(20)

geniusbridgebtimeout INT

daysToKeepArrayImagesFile Number of days for which array
image files and related archive
DB columns are kept

INT NOT NULL
DEFAULT 365

Index columns: -

2.3.10 Current Alarms List

ALARM Table

Table ALARM contains all alarms that are currently active in the Plant.
There is a row for each alarm.

Write Access: Backoffice Layer.

Server Layer: only for lifecycle (in future).

Read Access: Backoffice Layer.

Server Layer.

Column Notes SQL Type

deviceIndex -1 if not relevant (plant alarms) INT NOT NULL

slaveIndex -1 if not relevant (array and plant
alarms)

INT NOT NULL

DATABASE ARCHITECTURE

 27

2

Column Notes SQL Type

dispName Name of the resource to which
the alarm is related

VARCHAR(20) NOT
NULL

probCause INT NOT NULL

state

Acknowledged or not INT NOT NULL

0 = unacknowledged

1 = acknowledged

beginDate TIMESTAMP NOT NULL

category INT NOT NULL

severity INT NOT NULL

userName Identity of user that has
acknowledged the alarm (if any)

VARCHAR(20)

comment Comment introduced by user
that has acknowledged the
alarm

VARCHAR(100)

Index columns: deviceIndex, slaveIndex, probCause

ALDEVCNT Table

This table contains summary information about the alarms that are currently active in the
plant and on each of its components (arrays and slaves).

Alarms related to a plant component are counted also in the hierarchically superior
components (an alarm on a slave is counted in the slave, in the containing array and in the
plant; an alarm on an array is counted in the array and in the plant).

There will be a set of counters for each plant component and one for the plant as a whole.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex -1 if not relevant (plant alarms) INT NOT NULL

slaveIndex -1 if not relevant (array and plant
alarms)

INT NOT NULL

total_s_event Number of status events INT

total_warning Number of alarms with severity =
warning

INT

total_minor Number of alarms with severity = minor INT

total_major Number of alarms with severity = major INT

total_critical Number of alarms with severity =
critical

INT

total_unack Number of alarms in state unack INT

total_ack Number of alarms in state ack INT
Index columns: deviceIndex, slaveIndex

DATALOGIC WEBSENTINEL™ DB SCHEMA

28

2

2.3.11 History Alarms List

Table ALSTO contains all alarms that have occurred in the past in the plant (and that are
already cleared).
There is a row for each alarm.

Rows of this table get automatically deleted when they become obsolete (see parameter
OPERATIONS.daysToKeepAlarms).

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex -1 if not relevant (plant alarms) INT NOT NULL

slaveIndex -1 if not relevant (array and plant
alarms)

INT NOT NULL

dispName Name of the resource to which
the alarm is related

VARCHAR(20) NOT
NULL

probCause INT NOT NULL

state

Acknowledged or not INT NOT NULL

0 = unacknowledged

1 = acknowledged

beginDate TIMESTAMP NOT NULL

endDate TIMESTAMP NOT NULL

category INT NOT NULL

severity INT NOT NULL

userName Identity of user that has
acknowledged the alarm (if any)

VARCHAR(20)

comment Comment introduced by user
that has acknowledged the
alarm

VARCHAR(100)

Index columns: deviceIndex, slaveIndex

2.3.12 Current Plant Performance Table

Table CSSYSCNT contains the plant level performance information for the current and the
preceding sessions and for the last hour.
There are 3 rows, one for the current session, one for the preceding session, and one for the
last hour.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

beginSession TIMESTAMP NOT NULL

parcelCnt INT NOT NULL

DATABASE ARCHITECTURE

 29

2

Column Notes SQL Type

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

lowPerf

Low performance condition flag INT NOT NULL

0 = false

1 = true

curSess INT NOT NULL

0 = last session

1 = current session

2 = last hour

partialReadCnt INT NOT NULL

pcPartialRead DOUBLE NOT NULL
Index columns: curSess

2.3.13 History Plant Performance Table

Table HSSYSCNT contains the plant level performance information for past sessions and
hours.
There is one row for each session that is registered.

Sessions are automatically removed when they become stale (see parameter
OPERATIONS_SETUP.sessionsToKeep).

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

beginSession TIMESTAMP NOT NULL

endSession TIMESTAMP NOT NULL

parcelCnt INT NOT NULL

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

30

2

Column Notes SQL Type

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

lowPerf

Low performance condition flag INT NOT NULL

0 = false

1 = true

periodLevel INT NOT NULL

0 = hour

1 = session

sessionIndex A unique key associated to the
session/hour based on the use
of a sequential numbering
scheme, so that one can easily
move from one session/hour to
the next or the preceding one.

The session and the hour
counter run independently of
each other.

INT NOT NULL

partialReadCnt INT NOT NULL

pcPartialRead DOUBLE NOT NULL
Index columns: sessionIndex, periodLevel, beginSession
The pair (sessionIndex, periodLevel) represent a primary key of the table.

2.3.14 Current Array Performance Table

CSDEVCNT Table

Table CSDEVCNT contains the array level performance information for the current and the
preceding sessions and for the last hour.
There are 3 rows for each array, one for the current session, one for the preceding session,
and one for the last hour.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

parcelCnt INT NOT NULL

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

DATABASE ARCHITECTURE

 31

2

Column Notes SQL Type

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

resetCnt INT NOT NULL

prcLenAvg Trigger-on to trigger-off apparent
length

DOUBLE NOT NULL

shortPrcCnt INT NOT NULL

shortGapCnt INT NOT NULL

pcShortPrc DOUBLE NOT NULL

pcShortGap DOUBLE NOT NULL

lostCodCnt Unassigned codes (out of
parcels)

INT NOT NULL

pcLostCod DOUBLE NOT NULL

gapLenAvg DOUBLE NOT NULL

speedAvg DOUBLE NOT NULL

lastSpeed DOUBLE NOT NULL

lenYAvg Average Y coordinate of codes.

Normally related to the front
edge of the parcel, may be
absolute depending on array
type

DOUBLE NOT NULL

lenXAvg Average X coordinate of codes.

Normally related to the absolute
reference system of the array

DOUBLE NOT NULL

readLblCnt labels counter

N.B.: questa e’ una informazione
di last parcel presente
erroneamente in questa tabella

INT NOT NULL

hourDisTime totalHourDisconnectionTimeInS
econds

DOUBLE NOT NULL

suspectIntervalFlag INT NOT NULL

0 = false (not suspect)

1 = true (suspect)
lowPerf

Low performance condition flag.

If set the color of
GoodReadRate window fields is
set according to what specified
in
OPERATIONS_SETUP.threshol
dCrossingColor

INT NOT NULL

0 = false

1 = true

DATALOGIC WEBSENTINEL™ DB SCHEMA

32

2

Column Notes SQL Type

curSess INT NOT NULL

0 = last session

1 = current session

2 = last hour

partialReadCnt INT NOT NULL

pcPartialRead DOUBLE NOT NULL

sideBySideCount INT NOT NULL

pcSideBySide DOUBLE NOT NULL

prcLengthAvg DOUBLE NOT NULL

prcWidthAvg DOUBLE NOT NULL

prcHeigthAvg DOUBLE NOT NULL

prcVolAvg DOUBLE NOT NULL

prcXminPosAvg DOUBLE NOT NULL

prcXminPosMin DOUBLE NOT NULL

prcXmaxPosAvg DOUBLE NOT NULL

prcXmaxPosMax DOUBLE NOT NULL

prcWeightAvg DOUBLE NOT NULL
Index columns: deviceIndex, curses

CSSLOTCNT Table

Table CSSLOTCNT contains the array level performance information relative to individual
code groups for the current and the preceding sessions and for the last hour.
There are 3xN rows for each array, 3 rows for each code group, one for the current session,
one for the preceding session (N may vary for different arrays) and one for the last hour.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

slotIndex INT NOT NULL

parcelCnt INT NOT NULL

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

DATABASE ARCHITECTURE

 33

2

Column Notes SQL Type

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

curSess INT NOT NULL

0 = last session

1 = current session

2 = last hour
Index columns: deviceIndex, slotIndex, curSess

2.3.15 History Array Performance Table

HSDEVCNT Table

Table HSDEVCNT contains the array level performance information for past sessions and
hours.
There is one row for each pair (array, session), for each session that is registered.

Sessions are automatically removed when they become stale (see parameter
OPERATIONS_SETUP.sessionsToKeep).

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

beginSession TIMESTAMP NOT NULL

endSession TIMESTAMP NOT NULL

deviceIndex INT NOT NULL

parcelCnt INT NOT NULL

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

resetCnt INT NOT NULL

prcLenAvg Trigger-on to trigger-off apparent
length

DOUBLE NOT NULL

shortPrcCnt INT NOT NULL

shortGapCnt INT NOT NULL

pcShortPrc DOUBLE NOT NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

34

2

Column Notes SQL Type

pcShortGap DOUBLE NOT NULL

lostCodCnt INT NOT NULL

lostPrcCnt INT NOT NULL

pcLostCod DOUBLE NOT NULL

gapLenAvg DOUBLE NOT NULL

speedAvg DOUBLE NOT NULL

lastSpeed DOUBLE NOT NULL

lenYAvg Average Y coordinate of codes.

Normally related to the front
edge of the parcel, may be
absolute depending on array
type

DOUBLE NOT NULL

lenXAvg Average X coordinate of codes.

Normally related to the absolute
reference system of the array

DOUBLE NOT NULL

readLblCnt labels counter INT NOT NULL

hourDisTime totalHourDisconnectionTimeInS
econds

DOUBLE NOT NULL

suspectIntervalFlag INT NOT NULL

0 = false (not suspect)

1 = true (suspect)
lowPerf

Low performance condition flag.

If set the color of
GoodReadRate window field is
set according to what specified
in
OPERATIONS_SETUP.threshol
dCrossingColor

INT NOT NULL

0 = false

1 = true

periodLevel INT NOT NULL

0 = hour

1 = session

sessionIndex A unique key associated to the
session/hour based on the use
of a sequential numbering
scheme, so that one can easily
move from one session/hour to
the next or the preceding one.

The session and the hour
counter run independently of
each other.

INT NOT NULL

partialReadCnt INT NOT NULL

pcPartialRead DOUBLE NOT NULL

sideBySideCount INT NOT NULL

pcSideBySide DOUBLE NOT NULL

prcLengthAvg DOUBLE NOT NULL

prcWidthAvg DOUBLE NOT NULL

DATABASE ARCHITECTURE

 35

2

Column Notes SQL Type

prcHeigthAvg DOUBLE NOT NULL

prcVolAvg DOUBLE NOT NULL

prcXminPosAvg DOUBLE NOT NULL

prcXminPosMin DOUBLE NOT NULL

prcXmaxPosAvg DOUBLE NOT NULL

prcXmaxPosMax DOUBLE NOT NULL

prcWeightAvg DOUBLE NOT NULL
Index columns: deviceIndex, sessionIndex, periodLevel, beginSession
The 3-uple (deviceIndex, sessionIndex, periodLevel) represent a primary key of the table.

HSSLOTCNT Table

Table HSSLOTCNT contains the array level performance information relative to individual
code groups for the past sessions and hours.
There is one row for each pair (array, session), for each session that is registered.

Sessions are automatically removed when they become stale (see parameter
OPERATIONS_SETUP.sessionsToKeep).

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

beginSession TIMESTAMP NOT NULL

endSession TIMESTAMP NOT NULL

slotIndex INT NOT NULL

parcelCnt INT NOT NULL

goodReadCnt INT NOT NULL

noReadCnt INT NOT NULL

mulReadCnt INT NOT NULL

readCnt Used instead of goodRead when
multipleReads counted as
goodReads

INT NOT NULL

pcGoodRead DOUBLE NOT NULL

pcNoRead DOUBLE NOT NULL

pcMulRead DOUBLE NOT NULL

pcRead Used instead of goodRead when
multipleReads counted as
goodReads

DOUBLE NOT NULL

periodLevel INT NOT NULL

0 = hour

1 = session

DATALOGIC WEBSENTINEL™ DB SCHEMA

36

2

Column Notes SQL Type

sessionIndex A unique key associated to the
session/hour based on the use
of a sequential numbering
scheme, so that one can easily
move from one session/hour to
the next or the preceding one.

The session and the hour
counter run independently of
each other.

INT NOT NULL

Index columns: deviceIndex, slotIndex, sessionIndex, periodLevel, beginSession
The 4-uple (deviceIndex, slotIndex, sessionIndex, periodLevel) represent a primary key of
the table.

2.3.16 Current Slave Performance Table

Table CSSLAVECNT contains the slave level performance information for the current and
the preceding sessions and for the last hour.

There are 3 rows for each slave, one for the current session, one for the preceding session,
and one for the last hour.

NOTE

In case of a ClusterMultidata array the performance data of a slave node are
the same of those of an array.

A different set of counters and percentage indices has been defined for this
case.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

slaveIndex INT NOT NULL

parcelCnt INT NOT NULL

goodReadCnt Applies also to slaves of ClusterMultidata
arrays with meaning goodRead

INT NOT NULL

soloReadCnt INT NOT NULL

pcGoodRead Applies also to slaves of ClusterMultidata
arrays with meaning goodRead

DOUBLE NOT NULL

pcSoloRead DOUBLE NOT NULL
lowPerf

Low performance condition flag.

If set the color of ReadRate window fields
is set according to what specified in
OPERATIONS_SETUP.thresholdCrossing
Color

INT NOT NULL

0 = false

1 = true

DATABASE ARCHITECTURE

 37

2

Column Notes SQL Type

curSess INT NOT NULL

0 = last session

1 = current session

2 = last hour

noReadCnt Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

mulReadCnt Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

parReadCnt Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

readCnt Significant in case of a ClusterMultidata
array.

Defined as =
goodRead+parRead+mulRead

INT NOT NULL
DEFAULT 0

pcNoRead Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

pcMulRead Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

pcParRead Significant in case of a ClusterMultidata
array

INT NOT NULL
DEFAULT 0

pcRead Significant in case of a ClusterMultidata
array.

Defined as =
goodRead+parRead+mulRead

INT NOT NULL
DEFAULT 0

Index columns: deviceIndex, slaveIndex, curses

2.3.17 History Slave Performance Table

Table HSSLAVECNT contains the slave level performance information for the past sessions
and hours.
There is one row for each pair (slave, session), for each session that is registered.

Sessions are automatically removed when they become stale (see parameter
OPERATIONS_SETUP.sessionsToKeep).

NOTE

In case of a ClusterMultidata array the performance data of a slave node are
the same of those of an array.

A different set of counters and percentage indices has been defined for this
case.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

slaveIndex INT NOT NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

38

2

Column Notes SQL Type

beginSession TIMESTAMP NOT NULL

endSession TIMESTAMP NOT NULL

parcelCnt INT NOT NULL

goodReadCnt Applies also to slaves of
ClusterMultidata arrays with
meaning goodRead

INT NOT NULL

soloReadCnt INT NOT NULL

pcGoodRead Applies also to slaves of
ClusterMultidata arrays with
meaning goodRead

DOUBLE NOT NULL

pcSoloRead DOUBLE NOT NULL
lowPerf

Low performance condition flag.

If set the color of ReadRate
window field is set according to
what specified in
OPERATIONS_SETUP.threshol
dCrossingColor

INT NOT NULL

0 = false

1 = true

periodLevel INT NOT NULL

0 = hour

1 = session

sessionIndex A unique key associated to the
session/hour based on the use
of a sequential numbering
scheme, so that one can easily
move from one session/hour to
the next or the preceding one.

The session and the hour
counter run independently of
each other.

INT NOT NULL

noReadCnt Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

mulReadCnt Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

parReadCnt Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

readCnt Significant in case of a
ClusterMultidata array.

Defined as =
goodRead+parRead+mulRead

INT NOT NULL
DEFAULT 0

pcNoRead Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

pcMulRead Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

pcParRead Significant in case of a
ClusterMultidata array

INT NOT NULL
DEFAULT 0

DATABASE ARCHITECTURE

 39

2

Column Notes SQL Type

pcRead Significant in case of a
ClusterMultidata array

Defined as =
goodRead+parRead+mulRead

INT NOT NULL
DEFAULT 0

Index columns: deviceIndex, slaveIndex, sessionIndex, periodLevel, beginSession
The 4-uple (deviceIndex, slaveIndex, sessionIndex, periodLevel) represent a primary key of
the table.

2.3.18 SW Inventory Table

This table contains the list of all SW components of the WebSentinel system, including third
party components that implement the WebSentinel runtime environment.

For each component the following information is provided:

 Name;

 Version;

 Eventual license/copyright notice.

Table SW_INVENTORY_TABLE will be used to display the SW inventory information in the
help-about.
There is a row for each SW component.

Write Access: Backoffice Layer.

Server Layer.

Read Access: Server Layer.

Column Notes SQL Type

componentName VARCHAR(100) NOT
NULL

componentVersion VARCHAR(100) NOT
NULL

componentLicense If applicable, NULL otherwise.

Text of license/copyright notice.

VARCHAR(1000)

Index columns: -

2.3.19 Alerts Configuration

These tables contain the configuration info that is necessary to generate spontaneous
notification alerts (email notification).
They are written by the Server layer and used by the Backoffice Layer.

Alerts configuration is described by 2 tables:

 ALERTS_SETUP

 ALERTS_TO_SETUP

DATALOGIC WEBSENTINEL™ DB SCHEMA

40

2

ALERTS_SETUP Table

This table provides information about the triggering events and the content of email
notifications that are automatically generated by WebSentinel.
It is a single row table.

Write Access: Backoffice Layer.

Server Layer.

Read Access: Backoffice Layer.

Column Notes SQL Type

smtpEnabled

 INT NOT NULL

0 = false/No

1 = true/Yes

sendLowPerfAlarmEnabled

 INT NOT NULL

0 = false/No

1 = true/Yes

sendLowPerfAlarm Significant if
sendLowPerfAlarmEnabled=1

INT NOT NULL
1 = send anche alla fine
dell'ora

 2 = send solo alla fine
della sessione

sendDiagAlarmEnable INT NOT NULL

0 = false/No

1 = true/Yes

tcpDisconnectionTime

in minuti INT NOT NULL

sendTcpDisconnect

 INT NOT NULL
range = 0..2
0 = send immediato

1 = send alla fine dell'ora

2 = send alla fine della
sessione

sendDeviceDiagnostic

 INT NOT NULL
range = 0..2
0 = send immediato

1 = send alla fine dell'ora

2 = send alla fine della
sessione

sendSlaveDiagnostic INT NOT NULL
range = 0..2
0 = send immediato

1 = send alla fine dell'ora

2 = send alla fine della
sessione

DATABASE ARCHITECTURE

 41

2

Column Notes SQL Type

sendNoReadAlarms INT NOT NULL
range = 0..2
0 = send immediato

1 = send alla fine dell'ora

2 = send alla fine della
sessione

sendReportOnSessChangeE
nabled

 INT NOT NULL

0 = false/No

1 = true/Yes

sendPerformanceTXTReport
OnSessChange

 INT NOT NULL

0 = false/No

1 = true/Yes

sendPerformanceCSVReport
OnSessChange

 INT NOT NULL

0 = false/No

1 = true/Yes

sendPerformanceXMLReport
OnSessChange

 INT NOT NULL

0 = false/No

1 = true/Yes

sendAlarmCSVReportOnSess
Change

 INT NOT NULL

0 = false/No

1 = true/Yes

sendAlarmTXTReportOnSess
Change

 INT NOT NULL

0 = false/No

1 = true/Yes

smtpServer A valid IP address of the mail
server

VARCHAR(100) NOT
NULL

smtpFrom A valid smtp address: it will
result in the sender address of
email alerts

VARCHAR(100) NOT
NULL

Index columns: -

ALERTS_TO_SETUP Table

This table provides the list of destination of email alerts.
There is a row for each destination of the email alerts.

Write Access: Backoffice Layer.

Server Layer.

Read Access: Backoffice Layer.

Column Notes SQL Type

DATALOGIC WEBSENTINEL™ DB SCHEMA

42

2

Column Notes SQL Type

smtpTo A valid smtp address.

The only check that shoud be
performed is syntax (presence
of @ and of an IP address or a
dns name)

VARCHAR(100) NOT
NULL

language indicates whether the
destination is interested in the
local default language or in
English

INT NOT NULL

0 = English

1 = local default

Index columns: -

2.3.20 Compatibility Setup

Previous versions of WebSentinel supported different versions on the communication
protocol.
Additionally, the user may want to configure WebSentinel behaviour, so that it suites his
requirements and the requirements of the operating environment.

The COMPATIBILITY_SETUP table provides all this information.
It is a single row table.

Write Access: Backoffice Layer.

Server Layer.

Read Access: Backoffice Layer.

Column Notes SQL Type

metric Relevant for presentation of
information by the Server Layer
(GUI, save, print) and the
Backoffice Layer (report files).

The Backoffice layers works
always using metric measures.

INT NOT NULL

0 = imperial

1 = metric

comma

Decimal separator character.

Relevant for presentation of
information by the Server Layer
(GUI, save, print) and the
Backoffice Layer (report files).

INT NOT NULL

0 = decimal separator “.”

1 = decimal separator “,”

csvSeparator Relevant for Backoffice Layer.

CSV filed separator

VARCHAR(1) NOT NULL

exDiagInfo

Relevant for Backoffice Layer.

Speed info available in Diag
PDU

INT NOT NULL

0 = not present

1 = present

labelPos Relevant for Backoffice Layer.

Label position info available in
Parcel PDU.

INT NOT NULL

0 = not present

1 = present
Index columns: -

DATABASE ARCHITECTURE

 43

2

2.3.21 Alarms Definition

Table ALMDEFCFG provides configuration information about the alarm causes that are
defined in the system. Among the information provided by this table is the default severity of
an alarm: each array will redefine this severity, even if the defined value is identical to the
default.

If N is the number of alarm causes then table contains N rows.

This table is constructed by the Backoffice layer based on the definition of alarms that is
provided by the “Managed Reading System Types” description file: in fact this table exists
only logically, since its content can be accessed as part of the “Managed Reading System
Types” description file. See paragraph 1.2 for the definition of constants to be used to fill this
table.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Backoffice Layer.

Column Notes SQL Type

probCause The acronym of the alarm
(probable cause)

VARCHAR(20) NOT
NULL

probCauseCode A numeric identifier of the
probable cause

INT NOT NULL

category The category of the alarm INT NOT NULL

range = 0..6

defaultSeverity The default severity of the
alarm

INT NOT NULL

range = 1..4
Index columns: deviceIndex, probCause

2.3.22 Alarms Severity Assignment

Table DEVALMSEVCFG provides configuration information about the severity of alarms,
relative to each array.

If N is the number of alarm causes and M the number of arrays in the plant, then table
DEVALMSEVCFG contains NxM rows (thus, a row is present for each alarm cause and for
each array, even if the severity is equal to the default).

See paragraph 1.2 and paragraph 2.3.21 for the definition of constants to be used to fill this
table.
Note: all slaves of an array display assign the same severity to an alarm cause.

Write Access: Backoffice Layer.

Server Layer.

Read Access: Backoffice Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

DATALOGIC WEBSENTINEL™ DB SCHEMA

44

2

Column Notes SQL Type

 probCause The numeric identifier of the
probable cause (probCauseCode
in virtual table ALMDEFCFG)

INT NOT NULL

severity INT NOT NULL
Index columns: deviceIndex, probCause

2.3.23 Current Events Log

Table CURR_EVENTS_LOG registers all events that are taking place during the session. It
is cleared at the beginning of each session and its content is moved to the history events log.
Notice that it is possible to show similar info also at array and scanner level.

Write Access: Backoffice Layer.

Read Access: Backoffice Layer (for reporting purposes).

Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

slaveIndex INT NOT NULL

probCause INT NOT NULL

severity INT NOT NULL

category INT NOT NULL

status Raise vs. Clear INT NOT NULL

0 = clear

1 = raise

timeStamp TIMESTAMP NOT NULL
Index columns: deviceIndex, probCause

2.3.24 History Events Log

Table HIST_EVENTS_LOG registers all events that have taken place during past sessions.
History event logs are automatically removed when they become stale (see parameter
OPERATIONS_SETUP.sessionsToKeep).

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

slaveIndex INT NOT NULL

probCause INT NOT NULL

severity INT NOT NULL

category INT NOT NULL

DATABASE ARCHITECTURE

 45

2

Column Notes SQL Type

status Raise vs. Clear INT NOT NULL

0 = clear

1 = raise

timeStamp TIMESTAMP NOT NULL
Index columns: deviceIndex, probCause

2.3.25 Last Parcel Info

Last parcel info is provided through 3 tables:

 table LASTPARCEL_PARCEL

 table LASTPARCEL_SLOT

 table LASTPARCEL_SLOTLABEL

The info provided by these tables is used also to display the “Last Parcel Info” section of the
Array.Counters window and the “Last Codes” section of the Slave.Counters window (beside
the Last Parcel window).

LASTPARCEL_PARCEL Table

This table contains basic information about the last parcel that has been read by each array
of the plant.
There is one row for each array.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

parcelLength DOUBLE NOT NULL

gapFromPrevParcel DOUBLE NOT NULL

conveyorSpeed DOUBLE NOT NULL

parcelAnalysis Value 3 currently not used INT NOT NULL

range = 0..3

0 = GoodRead

 BaseInterface.rtGood

1 = NoRead
 BaseInterface.rtNo

2 = MultipleRead
 BaseInterface.rtMul

3 = PartialRead
 BaseInterface.rtPar

Index columns: deviceIndex

DATALOGIC WEBSENTINEL™ DB SCHEMA

46

2

LASTPARCEL_SLOT Table

This table contains information about all slots that appear in the last parcel that has been
read by each array of the plant.
There is one row for each slot of each array’s last parcel.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

slotIndex

 INT NOT NULL

labelSlot Identifier of the code group VARCHAR(10) NOT NULL

numLabel Number of barcodes of this
code group that have been
read on this parcel

INT NOT NULL

slotAnalysis Value 3 not used INT NOT NULL

range = 0..3

0 = GoodRead

 BaseInterface.rtGood

1 = NoRead
 BaseInterface.rtNo

2 = MultipleRead
 BaseInterface.rtMul

Index columns: deviceIndex, slotIndex

LASTPARCEL_SLOTLABEL Table

This table contains information about all barcodes that appear in the last parcel that has
been read by each array of the plant.
There is one row for each barcode of each array’s last parcel.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex Array index INT NOT NULL

slotIndex

 INT NOT NULL

labelIndex Position of the barcode in the
code group

INT NOT NULL

code

Barcode value VARCHAR(512) NOT
NULL

codeID AIM code of the symbology of
this barcode

VARCHAR(3) NOT NULL

codeLen INT NOT NULL

DATABASE ARCHITECTURE

 47

2

Column Notes SQL Type

numReads Number of slaves that have
read this barcode

INT NOT NULL

mask

reading-mask INT NOT NULL

labelX Y coordinate of barcode DOUBLE NOT NULL

labelY Y coordinate of barcode DOUBLE NOT NULL
Index columns: deviceIndex, slotIndex

2.3.26 Alarms Propagation and Icon Coloring

These tables provide the Server Layer all information that is necessary to color the plant
resource icons that are present in several windows. It also provides the information to colour
the digital input icons of the arrays.

Color configuration will take place through a 2 level table system:

 table RESOURCE_COLOR

 table DIGITALINPUT_COLOR

 table COLORS

Table RESOURCE_COLOR will indicate what color different icons should have, but colors
are indicated through symbolic values.

Table DIGITALINPUT_COLOR will indicate what color different digital input icons should
have, but colors are indicated through symbolic values.

Table COLORS maps symbolic color values to actual colors.

RESOURCE_COLOR Table

There is one row for each plant resource.
Icon columns may be significant or not depending on the resource. When not significant the
symbolic color will take value 0.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex -1 if not relevant (plant) INT NOT NULL

slaveIndex -1 if not relevant (array and
plant)

INT NOT NULL

treeIcon Symbolic color of this icon.

Significant also for plant: in tis
case it reports only alarms
specific of the WebSentinel
station.

INT NOT NULL

range = 0..4

DATALOGIC WEBSENTINEL™ DB SCHEMA

48

2

Column Notes SQL Type

treeSlavesIcon Symbolic color of this icon.

Not significant for slaves.

Not significant for plant.

INT NOT NULL

range = 0..5

layoutIcon Symbolic color of this icon.

Not significant for slaves.

INT NOT NULL

range = 0..4

layoutSlavesIcon Symbolic color of this icon.

Not significant for slaves.

Not significant for plant.

INT NOT NULL

range = 0..5

arraysViewIcon Symbolic color of this icon.

Significant only for arrays.

INT NOT NULL

range = 0..4

arraysViewSlavesIcon Symbolic color of this icon.

Significant only for arrays.

INT NOT NULL

range = 0..5

scannersViewArrayIcon Symbolic color of this icon.

Not significant for slaves.

Not significant for plant.

N.B.: Currently unused!

INT NOT NULL

range = 0..4

scannersViewSlavesIcon Symbolic color of this icon.

Significant only for slaves.

INT NOT NULL

range = 0..5
alarmSummary Symbolic color of the summary

alarm icon to be displayed for
arrays and slaves in their
summary frame:

Colored only if an alarm of the
specific resource is currently
active.

INT NOT NULL

range = 0..5

Index columns: deviceIndex, slaveIndex

DIGITALINPUT_COLOR Table

There is one row for each array.
Each row will have 8+1 columns, corresponding to all possible digital inputs of an array, even
though each array may actually handle less than 8 digital inputs.

Write Access: Backoffice Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex INT NOT NULL

digIn0 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

DATABASE ARCHITECTURE

 49

2

Column Notes SQL Type

digIn1 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn2 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn3 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn4 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn5 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn6 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant

digIn7 Symbolic color of this icon.

INT NOT NULL

range = 0..4

0 when not significant
Index columns: deviceIndex

SETUP_COLORS Table

There is one row for each symbolic color. This is a configuration table, which is used for the
translation from symbolic colors to actual colors.
There are 5 colors:

1. Red

2. Orange

3. Yellow

4. Green

5. Gray

Write Access: Backoffice Layer.

Server Layer.

Read Access: Server Layer.

Column Notes SQL Type

symbolicColor Array index INT NOT NULL

range = 1.. 5

DATALOGIC WEBSENTINEL™ DB SCHEMA

50

2

Column Notes SQL Type

actualColor

RGB code (according to winApi
macro that combines R, G and
B values)

INT NOT NULL

Index columns: deviceIndex, slotIndex

2.3.27 Plant Layout Description

Includes two tables:

 PLANT_LAYOUT

 PLANT_TABS

These tables register the information that is necessary to the Server Layer to draw the
Layout window.

PLANT_LAYOUT Table

Write Access: Server Layer.

Read Access: Server Layer.

Column Notes SQL Type

deviceIndex Array index.

-1 for plant

INT NOT NULL

upperLeftX In pixels INT NOT NULL

upperLeftY In pixels INT NOT NULL

horizSize In pixels INT NOT NULL

vertSize In pixels INT NOT NULL
Index columns: deviceIndex

PLANT_TABS Table

The Layout windows includes several tabs, each of which is described by the following table:

Write Access: Server Layer.

Read Access: Server Layer.

Column Notes SQL Type

TABINDEX Index of the tab INT NOT NULL

NAME Name and caption of the tab. VARCHAR
Index columns: TABINDEX

DATABASE ARCHITECTURE

 51

2

2.4 CONSISTENCY AND SYNCHRONIZATION

It must be guaranteed that the database doesn’t get corrupted even in case of a crash of a
client during a write operation.

No explicit synchronization should be performed in the access to the database except it is
required for concurrency or resiliency reasons.

DATALOGIC WEBSENTINEL™ DB SCHEMA

52

3

3 BACKOFFICE LAYER ARCHITECTURE

The Backoffice Layer is implemented as a single, multi-threaded Java application.

The Backoffice Layer may be in several states, among which:

 Initializing: this is the initial state of the Backoffice Layer upon activation: it looks for the
existence of the configuration file of a pre-existing WebSentinel installation, and if it finds
it, it registers all configuration information in the database.
While in the Initializing state the Backoffice Layer will not accept the creation of the TCP
connection supporting the Server-Backoffice Program Interface.

 Stopped: The Backoffice Layer is not connected and is not interacting with any reading
station.

 Started: The Backoffice Layer is connected or is trying to connect with all reading
stations of the plant, and is receiving diagnostic and performance info from all stations it
is connected to.

At the end of its Initializing phase the Backoffice Layer enters the Stopped state.
When changing state from Stopped to Started the Backoffice Layer will acquire the
configuration of the plant and its own functional configuration from the database.

When changing state from Started to Stopped the Backoffice Layer will produce a backup file
of the configuration of the plant and of its own functional configuration from the database.

Just as in the current version, stopping and starting WebSentinel will cause the closure of a
session and the opening of a new session.

3.1 DATABASE INITIALIZATION

The database will be initialized at the first startup of the system by the Backoffice Layer that
will also populate it either with the information derived from a pre-existing database file or
with default values: in any case all required information will be explicitly present in the
database.

3.2 SUSPECT INTERVAL FLAG

This flags indicates whether the array has been disconnected for such a long interval that the
performance data that have been collected may be not significant.

The computation of the value of this flag is in charge of the Backoffice Layer (both at session
and hour level).

Whilst in the past this computation has been based on an absolute disconnection threshold,
in WebSentinel it will be based on a percentage threshold (currently not configurable):

 1/60 of an hour for the last hour flag.

 1/1440 of a session for the session flag.

The computation of this flag is a responsibility of the Backoffice Layer.

EXTERNAL DATABASE ACCESS

 53

4

4 EXTERNAL DATABASE ACCESS

Derby database support two kind of connection:

 Local connection (only one local connection can be established)

 Remote connection (based on network server)

When Backoffice starts it builds the database, then makes a local connection and finally
starts the network server in order to allow other database connections.

The coordinates for remote database connection are:

Derby User = WebSentinelDB

Derby Password = WebSentinelDB

Network Server IP = localhost

Network Server Port = 1527

4.1 LOCAL CONNECTION

The local connection is used by Backoffice; it cannot be used by any other process.

4.2 REMOTE CONNECTION

A process can connect to the Derby database using the IBM DB2 JDBC Universal driver or
derby client JDBC driver (default is the derby client JDBC driver).

The following java program shows how a process can connect to the WebSentinel database:

public class NsSample {

public static final String DB2_JDBC_UNIVERSAL_DRIVER = new
String("com.ibm.db2.jcc.DB2Driver");

public static final String DERBY_CLIENT_DRIVER = "org.apache.derby.jdbc.ClientDriver";

// network server control specific

private static int NETWORKSERVER_PORT=1527;

// Derby database connection URL for embedded environment

public static final String CS_EMBED_DBURL="jdbc:derby:NSSampledb;";

// To connect to Derby Network Server

// This URL describes the target database

// Notice that the properties may be established via the URL syntax

private static final String CS_NS_DBURL=

"jdbc:derby:net://localhost:"+NETWORKSERVER_PORT+"/WebSentinelDB;create=true;retrie
veMessagesFromServerOnGetMessage=true;deferPrepares=true;";

DATALOGIC WEBSENTINEL™ DB SCHEMA

54

4

 // URL for the Derby client JDBC driver.

private static final String DERBY_CLIENT_URL=
"jdbc:derby://localhost:"+NETWORKSERVER_PORT+"/WebSentinelDB;create=true;";

// Default to using the Derby Client JDBC Driver for database connections

String url = DERBY_CLIENT_URL;

String jdbcDriver = DERBY_CLIENT_DRIVER;

public static void main(String[] args) throws Exception {

new nserverdemo.NsSample().startSample(args);

} // main

public void startSample(String[] args) throws Exception {

 NetworkServerUtil nwServer;

 Connection conn = null;

 PrintWriter pw = null;

 // Load the JDBC Driver

 try {

 Class.forName(jdbcDriver).newInstance();

 } catch (Exception e) {

 pw.println("[NsSample] Unable to load the JDBC driver. Following exception was
thrown");

 e.printStackTrace();

 System.exit(1); //critical error, so exit

 }

 // See Derby documentation for description of properties that may be set

 // in the context of the network server.

 Properties properties = new java.util.Properties();

 // The user and password properties are a must, required by JCC

 properties.setProperty("user","WebSentinelDB");

 properties.setProperty("password","WebSentinelDB");

 // Get database connection via DriverManager api

 try {

 conn = (Connection) DriverManager.getConnection(url, properties);

 } catch(Exception e) {

 pw.println("[NsSample] Connection request unsuccessful, exception thrown was:
");

 pw.println("[NsSample] Please check if all the jar files are in the classpath and the
dbUrl is set correctly.");

 e.printStackTrace();

 System.exit(1); //critical error, so exit

EXTERNAL DATABASE ACCESS

 55

4

 }

 //…………TO BE DONE

 conn.close();

 //…………TO BE DONE

 } catch (Exception e) {

 e.printStackTrace();

 }

} // startSample

/**

 * Determine which jdbc driver to use by parsing the command line args.

 * Accepted values:

 * jccjdbclient - The DB2 type 4 universal driver

 * derbyclient - The Derby network driver (default).

 * Note: because this is just a sample, we only care about whether

 * the above values are specified. If they are not, then we default

 * to the Derby network driver.

*/

private void parseArguments(String[] args)

 {

 int length = args.length;

 for (int index = 0; index < length; index++)

 {

if (args[index].equalsIgnoreCase("jccjdbcclient"))

{

 jdbcDriver = DB2_JDBC_UNIVERSAL_DRIVER;

 url = CS_NS_DBURL;

 break;

 } else if (args[index].equalsIgnoreCase("derbyClient"))

{

 jdbcDriver = DERBY_CLIENT_DRIVER;

 url = DERBY_CLIENT_URL;

 break;

}

 }

}// parseArguments

}// NsSample

DATALOGIC WEBSENTINEL™ DB SCHEMA

56

4

4.3 SQL SAMPLES

The following query retrieves all the arrays of the plant.

SELECT * FROM S.DEVICECFG ORDER BY deviceIndex;

The following query retrieves an array using its name (“array1”)

SELECT * FROM S.DEVICECFG WHERE name=“array1”;

The following two queries retrieve all the readers of a given array

 using the array name:
SELECT slave.* FROM S.SLAVECFG slave

WHERE slave.deviceIndex IN
SELECT array.deviceIndex

FROM S.DEVICECFG array
WHERE array.name=”array1”;

 using IP address and Port of the array

SELECT slave.* FROM S.SLAVECFG slave
WHERE slave.deviceIndex =

SELECT array.deviceIndex
FROM S.DEVICECFG array

WHERE array.addr=”171.16.11.01” AND
 array.port = 51232;

The following query retrieves the active alarms of the plant

SELECT al.* FROM S.ALARM al
WHERE al.deviceIndex=-1 AND al.slaveIndex=-1;

The following query retrieves the active alarms of all arrays of the plant:

SELECT al.* FROM S.ALARM al
WHERE al.deviceIndex<>-1 AND al.slaveIndex=-1;

The following query retrieves the active alarms of all readers of the plant:

SELECT al.* FROM S.ALARM al
WHERE al.deviceIndex<>-1 AND al.slaveIndex<>-1;

The following query retrieves the active alarms of a given array of the plant:

SELECT al.* FROM S.ALARM al
WHERE al.deviceIndex =

(SELECT array.deviceIndex
FROM S.DEVICECFG array

WHERE array.addr=”171.16.11.01” AND
 array.port = 51232)

AND al.slaveIndex=-1;

The following query retrieves the active alarms of all readers of a given array of the plant:

SELECT al.* FROM S.ALARM al
WHERE al.deviceIndex =

(SELECT array.deviceIndex
FROM S.DEVICECFG array

WHERE array.addr=”171.16.11.01” AND
 array.port = 51232)
AND al.slaveIndex<>-1;

MEANINGLESS FIELDS IN ON-LINE MODE

 57

5

5 MEANINGLESS FIELDS IN ON-LINE MODE

Counters Window

 Conveyor Speed

 Last Parcel Info - X:Y Position

 Last Parcel Info - Length

 Last Parcel Info – Gap

 Session Statistics – Short Parcels

 Session Statistics – Short Gaps

 Session Statistics – Lost Codes

 Session Statistics – Average (Avg.) Parcel Length

 Session Statistics – Average (Avg.) Gap Length

 Session Statistics – Average (Avg.) Conveyor Speed

 Session Statistics – Average (Avg.) X:Y Position

 Last Hour Statistics – Average (Avg.) Short Parcels

 Last Hour Statistics – Short Gaps

 Last Hour Statistics – Lost Codes

 Last Hour Statistics – Average (Avg.) Parcel Length

 Last Hour Statistics – Average (Avg.) Gap Length

 Last Hour Statistics – Average (Avg.) Conveyor Speed

 Last Hour Statistics – Average (Avg.) X:Y Position

